609 research outputs found

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach

    Full text link
    The change of the structure of concentrated colloidal suspensions upon addition of non-adsorbing polymer is studied within a two-component, Ornstein-Zernicke based liquid state approach. The polymers' conformational degrees of freedom are considered and excluded volume is enforced at the segment level. The polymer correlation hole, depletion layer, and excess chemical potentials are described in agreement with polymer physics theory in contrast to models treating the macromolecules as effective spheres. Known depletion attraction effects are recovered for low particle density, while at higher densities novel many-body effects emerge which become dominant for large polymers.Comment: 7 pages, 4 figures; to be published in Europhys. Let

    Rosenfeld functional for non-additive hard spheres

    Full text link
    The fundamental measure density functional theory for hard spheres is generalized to binary mixtures of arbitrary positive and moderate negative non-additivity between unlike components. In bulk the theory predicts fluid-fluid phase separation into phases with different chemical compositions. The location of the accompanying critical point agrees well with previous results from simulations over a broad range of non-additivities and both for symmetric and highly asymmetric size ratios. Results for partial pair correlation functions show good agreement with simulation data.Comment: 8 pages with 4 figure

    Coarse-graining strategies in polymer solutions

    Full text link
    We review a coarse-graining strategy (multiblob approach) for polymer solutions in which groups of monomers are mapped onto a single atom (a blob) and effective blob-blob interactions are obtained by requiring the coarse-grained model to reproduce some coarse-grained features of the zero-density isolated-chain structure. By tuning the level of coarse graining, i.e. the number of monomers to be mapped onto a single blob, the model should be adequate to explore the semidilute regime above the collapse transition, since in this case the monomer density is very small if chains are long enough. The implementation of these ideas has been previously based on a transferability hypothesis, which was not completely tested against full-monomer results (Pierleoni et al., J. Chem. Phys, 127, 171102 (2007)). We study different models proposed in the past and we compare their predictions to full-monomer results for the chain structure and the thermodynamics in the range of polymer volume fractions \Phi between 0 and 8. We find that the transferability assumption has a limited predictive power if a thermodynamically consistent model is required. We introduce a new tetramer model parametrized in such a way to reproduce not only zero-density intramolecular and intermolecular two-body probabilities, but also some intramolecular three-body and four-body distributions. We find that such a model correctly predicts three-chain effects, the structure and the thermodynamics up to \Phi ~ 2, a range considerably larger than that obtained with previous simpler models using zero-density potentials. Our results show the correctness of the ideas behind the multiblob approach but also that more work is needed to understand how to develop models with more effective monomers which would allow us to explore the semidilute regime at larger chain volume fractions.Comment: 33 pages, 19 figures, submitted to Soft Matte

    Aansprakelijkheidsbeperking van (markt)- toezichthouders

    Get PDF
    _In dit artikel onderzoeken wij met behulp van inzichten uit de rechtseconomie of beperking van de aansprakelijkheid van toezichthouders wegens falend toezicht wenselijk is. Omdat er redenen zijn om te vrezen dat onbeperkte aansprakelijkheid tot excessief toezicht leidt, betogen wij dat de aansprakelijkheid inderdaad beperkt moet worden. Deze beperking moet niet bestaan in een maximumbedrag waarvoor de toezichthouder aansprakelijk kan zijn, maar in een soepeler gedragsstandaard, zoals ‘opzet of grove schuld’.

    The Asakura-Oosawa model in the protein limit: the role of many-body interactions

    Full text link
    We study the Asakura-Oosawa model in the "protein limit", where the penetrable sphere radius RAOR_{AO} is much greater than the hard sphere radius RcR_c. The phase behaviour and structure calculated with a full many-body treatment show important qualitative differences when compared to a description based on pair potentials alone. The overall effect of the many-body interactions is repulsive.Comment: 9 pages and 11 figures, submitted to J. Phys.: Condensed Matter, special issue "Effective many-body interactions and correlations in soft matter
    • 

    corecore